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Abstract Real optimization problems often involve not one, but multiple objectives,
usually in conflict. In single-objective optimization there exists a global optimum,
while in the multi-objective case no optimal solution is clearly defined but rather a
set of optimums, which constitute the so called Pareto-optimal front. Thus, the goal
of multi-objective strategies is to generate a set of non-dominated solutions as an
approximation to this front. However, most problems of this kind cannot be solved
exactly because they have very large and highly complex search spaces. The objective
of this work is to compare the performance of a new hybrid method here proposed,
with several well-known multi-objective evolutionary algorithms (MOEA). The main
attraction of these methods is the integration of selection and diversity maintenance.
Since it is very difficult to describe exactly what a good approximation is in terms of a
number of criteria, the performance is quantified with adequate metrics that evaluate
the proximity to the global Pareto-front. In addition, this work is also one of the few
empirical studies that solves three-objective optimization problems using the concept
of global Pareto-optimality.
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1 Introduction

The aim of global optimization (GO) is to find the best solution of decision
models, in presence of multiple local solutions [1]. In recent years, researchers have
begun to apply different GO techniques to problems that occur in the analysis
and solution of multi-objective linear and non linear programming problems [2,3].
However, when the problem has several objective functions, the notion of opti-
mum changes. Classical optimization methods (including multi-criteria decision-mak-
ing methods) suggest converting the multi-objective optimization problem (MOP)
into a single-objective optimization problem by combining the objectives in a sin-
gle mathematical function [4]. However, in last two decades most papers dealing
with MOPs used the concept of Pareto-dominance [5], where the goal is to find
trade-off solutions (widely known as Pareto-optimal solutions) rather than
a single solution. In the absence of any further information, none of these Pa-
reto-optimal solutions is considered to be better than the others. Generating the
Pareto-optimal set in complex problems is computationally expensive and often
infeasible, but using heuristic methods can allow to obtain a representative sample
of it.

Conceptually, evolutionary algorithms (EA) [5] base their operation on main-
taining a set of solutions (individuals) which evolve in successive iterations (gen-
erations) trying to optimize an objective function. In the multi-objective context,
it is necessary to design strategies that obtain good solutions in all the objectives.
The main advantage of the multi-objective EAs (MOEAs) [6,7] is their ability to
find multiple Pareto-optimal solutions in one single run. Over the past decade, a
number of MOEAs have been suggested [8–16]. The interest in the design and imple-
mentation of hybrid meta-heuristics has increased remarkably in recent years [17].
However, to date there has been little research effort dedicated to the hybridiza-
tion of meta-heuristics for multi-objective optimization. Some studies [15,16] have
shown that combining ideas of different methods allows the quality of the solutions
to be improved. Although many MOEAs have adequately demonstrated their abil-
ity to solve two-objective problems, there are few studies in problems with three
or more objectives. For instance, Deb et al. [18] compared the performance of
two Pareto-based MOEAs in some three-objective optimization problems. This pa-
per presents a new hybrid method, msPESA, whose performance is evaluated ver-
sus other well-known MOEAs in several test functions of two and three
objectives.

The remainder of the paper is organized as follows. Section 2 gives some gen-
eral Multi-objective optimization concepts, and a brief overview of some well known
MOEAs found in the literature. Section 3 describes the new hybrid method here pro-
posed. Section 4 details the test problems and performance metrics used to evaluate
the performance of the MOEAs described in Sects. 2 and 3. Experimental results are
provided and analyzed in Sect. 5. Finally, we outline the conclusions of this paper in
Sect. 6.
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2 Multi-objective optimization: concepts and techniques

This section introduces some multi-objective concepts, and briefly describe some well-
known methods we have implemented to compare their performance with the new
method presented in Sect. 3.

Definition 1 Multi-Objective Optimization is the process of searching for one or
more decision variables that simultaneously satisfy all constraints, and optimize an
objective function vector that maps the decision variables to two or more objectives.

minimize/maximize(fk(s)),∀k ∈ [1, K]
Each decision vector or solution s = {(s1, s2, .., sm)} represents accurate numerical

qualities for a MOP. The set of all decision vectors constitutes the decision space.
The set of decision vectors that simultaneously satisfies all the constraints is called
feasible set (F). The objective function vector (f ) maps the decision vectors from
the decision space into a K-dimensional objective space Z ∈ �K, z = f (s), f (s) =
{f1(s), f2(s), . . . , fK(s)}, z ∈ Z, s ∈ F.

Given a MOP with K ≥ 2 objectives, instead of giving a scalar value to each solu-
tion, a partial order is defined according to Pareto-dominance relations, as we detail
below.

Definition 2 Order relation between decision vectors Let s and s′ be two decision
vectors. The dominance relations in a minimization problem are:

s dominates s′ (s ≺ s′) iff fk(s) < fk(s′) ∧ fk′(s) �> fk′(s
′) ,∀k′ �= k ∈ [1, K]

s, s′ are incomparable (s ∼ s′) iff fk(s) < fk(s′) ∧ fk′(s) > fk′(s
′) , k′ �= k ∈ [1, K]

Definition 3 Pareto-optimal solution A solution s is called Pareto-optimal if there is
no other s′ ∈ F, such that f (s′) < f (s). All the Pareto-optimal solutions define the
Pareto-optimal set.

Definition 4 Non-dominated solution A solution s ∈ F is non-dominated with respect
to a set S′ ∈ F if and only if � ∃s′ ∈ S′, verifying that s′ ≺ s.

Definition 5 Non-dominated set Given a set of solutions S′, such that S′ ∈ F and
Z′ = f (S′), the function ND(S′) returns the set of non-dominated solutions from S′:

ND(S′) = {∀s′ ∈ S′ | s′ is non-dominated by any other s”, s′′ ∈ S′}
Figure 1 graphically describes the Pareto-dominance concept for a minimization

problem with two objectives (f1 and f2). Figure 1a shows the location of several solu-
tions. The filled circles represent non-dominated solutions, while the non-filled ones
symbolize dominated solutions. Figure 1b shows the relative distribution of the solu-
tions in reference to s. There exist solutions that are worse (in both objectives) than
s, better (in both objectives) than s, and incomparable (better in one objective and
worse in the other).

Over the past decade, a number of MOEAs have been proposed [8–16]. In the
following we offer a brief description of three methods implemented to be compared
with the new MOEA presented in Sect. 3. The first method we have adapted is the
strength pareto evolutionary algorithm 2 (SPEA2) [12], which is an improved version
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Fig. 1 Pareto-dominance relations in the two-objective case

of the SPEA method [12]. SPEA2 incorporates a fitness assignment strategy that
takes into account the number of individuals dominated by each solution and the
number of individuals that dominate it, so that best individuals have higher probabil-
ity to be chosen in the selection process. It uses a nearest neighbor density estimation
technique which guides the search more efficiently. In addition, SPEA2 uses a sec-
ondary (external) population of solutions to store promising solutions found in the
main population, and applies an enhanced archive truncation method that guarantees
the preservation of boundary solutions. The second MOEA implemented is the non-
dominated sorting genetic algorithm-II (NSGA-II) [11], which is an extended version
of NSGA [10]. NSGA-II hierarchizes the population in several categories according
to Pareto-dominance relations, and uses elitism and a crowded comparison operator
that maintains diversity. Third MOEA analyzed is the pareto envelope-based selection
algorithm (PESA) [15], which combines some aspects of SPEA [12] and PAES [14].
It uses a small internal population and a larger external population (archive), where
non-dominated solutions found in the main population are stored using a hyper-grid
based scheme.

3 msPESA (Mixed spreading between PESA and NSGA-II)

In this section we present a new hybrid MOEA, msPESA, which combines some
aspects of PESA, NSGA-II, and local search (LS). Results obtained demonstrate
that the synergy of these methods allows an improvement in the quality of the solu-
tions obtained, in comparison with PESA, NSGA-II, and SPEA2. Common aspects
of msPESA with other MOEAs are: it uses a population of solutions (internal pop-
ulation, IP), which are improved by applying evolutionary operators (crossover and
mutation); it stores promising solutions found in IP in an external population (EP)
of solutions; it uses the concept of Pareto-dominance in the selection process; it also
uses strategies of diversification and elitism.



J Glob Optim (2007) 38:265–281 269

The pseudo-code of msPESA is shown in Procedure 1 and operates as follows.
Input parameters are the number of objectives (K ≥ 2), IP size, EP size, and the stop
condition (e.g. number of iterations or evaluations). The first step of this procedure
consists of initializing the internal population by random solutions. After that, a sec-
ondary population (external population, EP) is created to store promising solutions
obtained in the IP, which could be lost due to the application of evolutionary oper-
ators. Like PESA, msPESA manages EP using a hypergrid based scheme which is
dynamically resized according to the extreme values of the non-dominated solutions
found in each objective. However, while PESA divides the search space in a K-dimen-
sional grid of boxes, msPESA divides it in a K-1 dimensional one. The reason for this
variation is that when the search process advances, and therefore the closeness of
the solutions to the Pareto-optimal front advances, the use of a K-dimensional space
implies that most boxes in the hypergrid are empty. The use of one less dimension less
in msPESA is therefore compensated by an increase in the precision of the remaining
ones, maintaining the number of boxes constant. Figure 2 describes the difference
between using a K-dimensional (PESA) or a K-1 dimensional hypergrid (msPESA).
As it can be observed in Fig. 2a, in the hypergrid used in PESA 11/16 boxes are empty
and, although the other 5/11 have approximately the same number of solutions each,
they are not very well distributed. However, a K-1 dimensional hypergrid Fig. 2b
tends to obtain a better distribution of the solutions if the number of solutions located
in each box is approximately the same.

In the selection process, msPESA uses a variation of NSGA-II where only the best
front of IP is considered for inclusion in EP. The direct consequence of this variation
is that the selection pressure is lower than in NSGA-II. Thus, once the hypergrid has
been created, only non-dominated solutions located in IP (those with higher hierar-
chy) are stored in the hypergrid (EP). While the stop condition is not fulfilled, the
algorithm works as follows. While in PESA the child population is generated from EP,
msPESA uses IP for this purpose. In particular, children are generated by applying
evolutionary operators to each solution (s1) belonging to IP. Considering that the
representation of solutions is not binary, but integer, the crossover operator used con-
sists of calculating the arithmetic average between two parents solutions, while the

(a) (b)

Fig. 2 (a) Hypergrid in PESA, (b) Hypergrid in msPESA
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mutation operator is an arbitrary variation of the current solution. Crosssover and
mutation operators in each iteration according to two probability values Pcrossover
and Pmutation, respectively. If this new solution is not dominated by any solution s′
located in IP it is considered as “primary candidate”. A local search procedure is
then applied with the aim of increasing the diversity of the solutions. In particular,
this local search procedure works by generating a subset of solutions by means of the
mutation operator. Solutions located in that subset, whose size LSsize is arbitrary,
are considered as “firm candidates”. Each one of these firm candidate solutions (s2)
is included in the EP using Pareto-dominance relations. Thus, s2 is stored in the EP
if it dominates any solution located in EP. If that condition is not fulfilled there is a
remaining possibility to include s2 in EP: if that “firm candidate” (s2) is incomparable
to any solution s′ in EP, and the squeeze factor of s2 is lower than the squeeze factor
of s′, s2 substitutes s′ in EP. This approach aims to minimize the maximum number of
chromosomes per box, i.e. to improve the distribution of solutions in the search space.
As in PAES, the squeeze factor is calculated dynamically, since previous movements
may have modified the structure of the hypergrid. All the solutions of EP are located
in their corresponding box. The cardinal of that box is then obtained, and therefore
the squeeze factor of each solution. When the stop condition is fulfilled, the EP is
returned as the non-dominated set obtained by msPESA.

Procedure 1 : Pseudocode of msPESA

input: K, IPsize, EPsize, LSsize, Pcrossover, Pmutation, stop_condition;
Initialize_IP(IPsize);
Create HyperGrid of K-1 dimensions divided into EPsize boxes per dimension;
EP←ND(IP);
While stop_condition is not fulfilled

For each solution s1 : s1 ∈IP
Select two random parents sf , sm : sf , sm ∈IP;
If Pcrossover >random(0,1) Then

s1 ← crossover (sf ), sm;
If Pmutation >random(0,1) Then

s1 ←mutation(s1);
If s1 is not dominated by any solution s′ : s′ ∈ EP Then

subset←LocalSearch(s1, LSsize);
For each solution s2 : s2 ∈subset

If s2 dominates any solution s′ : s′ ∈EP Then
s′ ← s2;
Cardinal[b]←Count the number of solutions located in the box b, ∀b∈Hypergrid;
For each solution s : s ∈EP

squeeze_factor[s]←Cardinal[b] : b is the box where s is located;
Else

squeeze_max←max(squeeze_factor[s′]) : ∀s′ ∈EP;
If squeeze_factor[s2] <squeeze_max Then

s3 ←Random solution of box with maximum squeeze factor : s3 ∈EP;
s3 ← s2;
Cardinal[b] ←Count the number of solutions located in the box b,∀b∈Hypergrid;
For each solution s : s ∈EP

squeeze_factor[s] ←Cardinal[b] : b is the box where s is located;
Return (EP);
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4 Test problem suite

With the aim of evaluating the performance of the MOEAs described in Sect. 3, we
propose to apply several test problems. In particular NSGA-II, SPEA2, PESA, and
msPESA have been evaluated on eight test problems (five two-objective problems,
and three three-objective problems).

4.1 Two-objective test problems

Here we describe five bi-objective test problems [19] we have used in our comparison.
Each is structured in the same manner and consists of three functions f1, g, h:

Minimize F(x) = (f1(x1), f2(x))

subject to : f2(x) = g(x2, . . . , xm) h(f1(x1), g(x2, . . . , xm))

where x = (x1, . . . , xm)

Function f1 is a function of x1 only, g is a function of the remaining m-1 variables,
and the parameters of h are the function values of f1 and g. The test functions differ in
these three functions. Each of the functions is a two-objective minimization problem
on m parameters.
Test Problem ZDT1 (convex Pareto-optimal front)

f1(x1) = x1
g(x2, . . . , xm) = 1+ 9

m−1

∑m
i=2 xi

h(f1(x1), g(x2, . . . , xm)) = 1−
√

f1
g

where m = 30, xi ∈ [0, 1].
Test Problem ZDT2 (non-convex Pareto-optimal front)

f1(x1) = x1
g(x2, . . . , xm) = 1+ 9

(m−1)

∑m
i=2 xi

h(f1(x1), g(x2, . . . , xm)) = 1− ( f1
g

)2

where m = 30, xi∈[0,1].
Test Problem ZDT3 (discontinuous Pareto-optimal fronts)

f1(x1) = x1
g(x2, . . . , xm) = 1+ 9

(m−1)

∑m
i=2 xi

h(f1(x1), g(x2, . . . , xm)) = 1−
√

f1
g − f1

g sin (10πf1)

where m = 30, xi∈[0,1].
Test Problem ZDT4 (multi-modal problem)

f1(x1) = x1
g(x2, . . . , xm) = 1+ 10(m− 1)+∑m

i=2(x
2
i − 10cos (4πxi))

h(f1(x1), g(x2, . . . , xm)) = 1−
√

f1
g

where m = 10, x1 ∈[0,1], x2, . . . , xm ∈[-5,5]
Test Problem ZDT6 (non-uniformity problem)

f1(x1) = 1− exp−4x1 sin6(6πx1)

g(x2, . . . , xm) = 1+ 9
(m−1)

.
∑m

i=2 x.25
i

h(f1(x1), g(x2, . . . , xm)) = 1− (f1/g)2

where m = 10, xi ∈[0,1]
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4.2 Three-objective test problems

Most papers dealing with multi-objective optimization try to solve two-objective test
problems. However, the effect of increasing the number of objectives to optimize
becomes an interesting aspect to analyze. With this aim, we evaluate the MOEAs
described above in some three-objective optimization problems proposed by Deb
et al. [18].

Test Problem DTLZ1 This test function is K-objective problem with a linear Pareto-
optimal front:

Minimize f1(x) = 1
2

x1x2....xK−1(1+ g(xK)),

Minimize f2(x) = 1
2

x1x2....(1− xK−1)(1+ g(xK)),

· ·
· ·

Minimize fK−1(x) = 1
2

x1(1− x2)(1+ g(xK)),

Minimize fK(x) = 1
2
(1− x1)(1+ g(xK))

subject to 0 ≤ xi ≤ 1, for i = 1, 2, .., n

The function g(xK) requires |xK| = w variables and must take any function with
g ≥ 0, e.g. the following one:

g(xK) = 100
[
|xK| +

∑

xi
(xi − 0.5)2 − cos(20π(xi − 0.5))

]
, ∀xi ∈ xK

The Pareto-optimal solution corresponds to xK = 0 and the objective function val-
ues lie on the linear hyper-plane:

∑K
k=1 fk = 0.5. A value of w = 5 is suggested here.

In the above problem, the total number of variables is n = K + w− 1. The difficulty
in this problem is to converge to the hyper-plane. The search space contains (11w− 1)
local Pareto-optimal fronts.
Test Problem DTLZ2 This test function is very suitable to evaluate the ability to scale
up its performance in a large number of objectives:

Minimize f1(x) = (1+ g(xK)) cos (x1π/2) cos(x2 π/2) ... cos (xK−2π/2) cos (xK−1 π/2),

Minimize f2(x) = (1+ g(xK)) cos (x1π/2) cos(x2 π/2) ... cos (xK−2π/2) sin (xK−1 π/2),

Minimize f3(x) = (1+ g(xK)) cos (x1π/2) cos(x2 π/2) ... sin (xK−2π/2),

· ·
· ·

Minimize fK−1(x) = (1+ g(xK)) cos (x1π/2) sin(x2π/2),

Minimize fK(x) = (1+ g(xK)) sin (x1π/2)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, .., n

where: g(xK) =
∑

xi
(xi − 0.5)2, ∀xi ∈ xK

Here, a value of w = |xK| = 10 is used. The total number of decision variables
is n = K + w − 1. The function g introduces (3w − 1) local Pareto-optimal fronts,



J Glob Optim (2007) 38:265–281 273

and one global Pareto-optimal front. All the local Pareto-optimal fronts are parallel
to the global Pareto-optimal front. The global Pareto-optimal front corresponds to
xK = (0.5, . . . , 0.5)T .
Test Problem DTLZ7 The last test function we use in our comparison is DTLZ7,
which is formed by several disconnected sets of Pareto-optimal regions:

Minimize f1(x1) = x1,

Minimize f2(x2) = x2,

· ·
· ·

Minimize fK−1(xK−1) = xK−1,

Minimize fK(x) = (1+ g(xK))h(f1, f2, . . . , fK−1, g)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, .., n

where : g(xK) = 1+ 9
xK

∑

xi
xi,

h(f1, f2, . . . , fK−1, g) = K −
K−1∑

i=1

fi

(1+ g)
(1+ sin(3πfi))]), ∀xi ∈ xK

The test problem has 2K−1 disconnected Pareto-optimal regions in the search space.
The functional g requires w = |xK|decision variables and the total number of variables
is n = K+w− 1. Authors suggest w = 20. The Pareto-optimal solutions corresponds
to xK = 0. This test problem will evaluate the ability of the MOEAs to maintain the
solutions in different Pareto-optimal regions.

4.3 Performance measures

The elaboration of a merit ranking between several methods is not a trivial proce-
dure. In general, an exact order of merit in MOEAs is almost impossible, although it
is possible to extract some results from the behavior of each algorithm using accurate
metrics. Some authors [20,21] have analyzed a large variety of performance metrics
for MOPs. In these studies, metrics are classified in two main categories, according to
whether they evaluate the closeness to the Pareto-optimal front, or the diversity in
the obtained front.

In the first category, almost all metrics suggested for bi-objective MOPs can be
applied to problems with more objectives. In this category we can find the error
ratio metric, set coverage metric, generational distance metric, etc.. The second cate-
gory, which includes the spacing metric, has the drawback that measurements of the
spread in bi-objective MOPs cannot be directly applied to problems with three or
more objectives. This is because a set of non-dominated solutions with a good spacing
metric does not necessarily mean a good distribution of solutions in the entire Pareto-
optimal front. Other alternatives, like the maximum spread metric, which measures
the Euclidean distance between extreme solutions, do not reveal the true distribution
of intermediate solutions. Other authors have proposed applying the hyper-volume
metric, in combination with the relative set coverage metric, in the 2, 3, and 4-objec-
tive knapsack problem [12]. Our empirical study is focused to evaluate the proximity
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of the solutions to the Pareto-optimal front, reason why we have adapted the metrics
proposed in SPEA [12], as we describe now.

Definition 6 Set coverage metric (C) Let X, X ′ be two subsets of solutions. The func-
tion C (see Formula (1)) maps the ordered pair (X, X ′) to the interval [0,1]. The value
C(X, X ′) = 1 means that all points in X’ are dominated by or incomparable to the
points of X.

C(X, X ′)← |a
′ ∈ X ′; ∃a ∈ X : a  a′|

|X ′| (1)

Definition 7 Average size of the space covered (S) Given a set of solutions, X =
{x1, x2, . . . , xn}, the function S(X) returns the average volume enclosed by the union
of the polytopes p1, p2, . . . pK, where each pi is formed by the intersections of the
following hyperplanes arising out of xi, along with the axes: for each axis in the objec-
tive space, there is a perpendicular hyperplane passing through the point (f1(xi), . . . ,
fK(xi)). In the bi-dimensional case, each pi represents a rectangle defined by the
points (0,0) and (f1, f2). Figure 1b displays how this rectangle is calculated for solu-
tion s. Thus, the smaller this average volume is, the better the approximation to the
(unknown) Pareto-optimal front is supposed. In order to compare sets of different
sizes, the sum of space covered is normalized according to the number of solutions of
each non-dominated set, as it is shown in Formula (2).

S(X)←
∑|X|

i=1

(∏|K|
k=1

fk(xi)
max(fk(X))

)

|X| (2)

5 Experimental results

In the search for an impartial, accurate comparison that excludes the effects of chance,
it is necessary to consider many aspects, and for this reason we have made our own
implementation of each algorithm, and all of them have been integrated in the same
platform.

Since EAs are highly configurable procedures [5], the first step is to assign val-
ues to the parameters. Some values are fixed and equal for all the methods during
the whole comparison. Although each algorithm could be undoubtedly improved by
assigning particular values to the parameters, authors do not suggest this, leaving the
users freedom of choice. The genetic operators are the same for all the algorithms,
as are the data structures, so the running conditions are equivalent, and the differ-
ences between results appear as a consequence of the implementation of the different
algorithms. Due to the recommendation in [15], the size of the IP in PESA should
be smaller than the EP. For this reason, all the methods use the following IP and EP
sizes: {IPsize = 10; EP = 100}. On the other hand, all the algorithms are run for the
same number of evaluations of the fitness function. In particular, in the bi-objective
problems this number of evaluations is 10000, while in the three-objective problems
this value has been increased to 25000, due to the higher complexity of these problems.
Crossover and mutation probabilities are the same in all the executions. These proba-
bilities, {Pcrossover = 0.9, Pmutation = 0.1}, are often used in the design of evolutionary
algorithms. Finally, in msPESA the subset size is LSsize = 10.
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Fig. 3 Non-dominated sets of msPESA variants on four bi-objective functions

Table 1 Average size of the
space covered (S) obtained by
the variants in the
two-objective test problems

msPESA1 msPESA2 msPESA3 msPESA4

ZDT1 0.16 0.09 0.17 0.10
ZDT2 0.27 0.27 0.27 0.27
ZDT3 0.06 0.01 0.01 0.01
ZDT4 0.05 0.10 0.19 0.10
ZDT6 0.32 0.31 0.44 0.32

The first aspect we analyze is the improvement provided by msPESA. To this
end, Table 1 summarizes the average size of the space covered obtained in the two-
objective test functions by four variants: msPESA1 (without LS, PESA hypergrid),
msPESA2 (with LS, PESA hypergrid), msPESA3 (without LS, msPESA hypergrid),
and msPESA4 (with LS, msPESA hypergrid). This table shows that none of these
alternatives stands out from the others in all cases, although msPESA4 is well suited.

Table 2 compares in all test functions these four variants using the set coverage
metric. Each numerical value in this table indicates that the method located in its
row dominates R% solutions of the method located in its column, where R% is that
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Fig. 4 Non-dominated sets of SPEA2, NSGA-II, PESA, and msPESA on bi-objective functions

value multiplied by 100. On average, solutions obtained by msPESA4 covers 73.0%,
92.7%, and 80.5% of non-dominated solutions obtained by msPESA1, msPESA2, and
msPESA3, respectively. On the contrary, only 65.5%, 75.1% and 53.2% of the non-
dominated solutions obtained by msPESA4 are covered by msPESA1, msPESA2,
and msPESA3, respectively. These results show the advantages obtained by using
local search and the new grid strategy (msPESA4).

Figure 3 shows the non-dominated solutions obtained by the four variants described
above in ZDT1, ZDT2, ZDT3, and ZDT6. It is clear that msPESA4, obtains non-
dominated solutions closer to the Pareto-optimal front. Furthermore, msPESA also
obtains the best distribution of solutions along the front. Only 5000 evaluations have
been used in these executions in order to notice the fast convergence of msPESA4.

Once we have shown the advantages provided by the simultaneous use of local
search and the new grid archiving strategy, we go on to evaluate the performance
of msPESA (msPESA4) in comparison with NSGA-II, SPEA2, and PESA. Table 3
shows the results obtained using the metric S. As we can observe, msPESA obtains
the best performance in some test functions, but not in all cases. In the two-objective
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Fig. 5 Non-dominated sets of SPEA2, NSGA-II, PESA, and msPESA on three-objective functions
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Table 2 Comparison of msPESA alternatives using set coverage metric (C) in all test problems

On each test problem On average

msPES msPES msPES msPES msPES msPES msPES msPES
A1 A2 A3 A4 A1 A2 A3 A4

ZDT1 0.091 0.227 0.182 ZDT1
ZDT2 1.000 1.000 1.000 ZDT2
ZDT3 0.303 0.212 0.272 ZDT3
ZDT4 0.571 1.000 0.762 ZDT4

msPESA1 ZDT6 0.185 0.147 0.037 ZDT6 0.635 0.616 0.655
DTLZ1 0.980 0.770 1.000 DTLZ1
DTLZ2 0.960 0.580 1.000 DTLZ2
DTLZ7 0.989 0.989 0.989 DTLZ7

0.947 ZDT1 1.000 0.789 ZDT1
1.000 ZDT2 1.000 1.000 ZDT2
0.897 ZDT3 1.000 0.448 ZDT3
1.000 ZDT4 1.000 1.000 ZDT4

msPESA2 1.000 ZDT6 1.000 0.321 0.664 DTLZ6 0.825 0.751
0.020 DTLZ1 0.250 0.470 DTLZ1
0.450 DTLZ2 0.350 0.980 DTLZ2
0.000 DTLZ7 1.000 1.000 DTLZ7

1.000 0.000 ZDT1 0.034 ZDT1
1.000 1.000 ZDT2 1.000 ZDT2
1.000 0.375 ZDT3 0.025 ZDT3
0.136 0.182 ZDT4 0.227 ZDT4

msPESA3 0.985 0.106 ZDT6 0.000 0.718 0.578 ZDT6 0.532
0.680 1.000 DTLZ1 0.970 DTLZ1
0.940 0.960 DTLZ2 1.000 DTLZ2
0.000 1.000 DTLZ7 1.000 DTLZ7

1.000 0.963 1.000 ZDT1 ZDT1
1.000 1.000 1.000 ZDT2 ZDT2
1.000 1.000 1.000 ZDT3 ZDT3
1.000 0.871 1.000 ZDT4 ZDT4

msPESA4 1.000 1.000 1.000 ZDT6 0.730 0.927 0.805 ZDT6
0.340 0.940 0.250 DTLZ1 DTLZ1
0.490 0.640 0.190 DTLZ2 DTLZ2
0.091 1.000 1.000 DTLZ7 DTLZ7

Table 3 Average size of the space covered (S) obtained by the MOEAs in all test problems

msPESA NSGA-II PESA SPEA2

ZDT1 0.10 0.24 0.29 0.19
ZDT2 0.27 0.23 0.28 0.23
ZDT3 0.01 0.30 0.05 0.46
ZDT4 0.10 0.05 0.13 0.02
ZDT6 0.32 0.80 0.53 0.81
DTLZ1 5.24 1.61 3.49 3.47
DTLZ2 0.47 0.25 0.36 0.48
DTLZ7 0.28 0.27 0.16 0.21

test problems msPESA clearly obtains the best performance, while in three-objective
problems it is slightly worse than SPEA2, and NSGA-II.
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Table 4 Comparison of MOEAs using set coverage metric (C) in all test problems

On each test problem On average

msPESA NSGA-II PESA SPEA2 msPESA NSGA-II PESA SPEA2

ZDT1 1.000 1.000 1.000 ZDT1
ZDT2 1.000 1.000 1.000 ZDT2
ZDT3 1.000 1.000 1.000 ZDT3
ZDT4 1.000 1.000 1.000 ZDT4

msPESA ZDT6 1.000 1.000 1.000 ZDT6 0.935 0.946 0.945
DTLZ1 0.890 0.790 0.810 DTLZ1
DTLZ2 0.820 0.870 0.940 DTLZ2
DTLZ7 0.870 0.910 0.810 DTLZ7

0.300 ZDT1 0.000 0.000 ZDT1
1.000 ZDT2 1.000 1.000 ZDT2
0.180 ZDT3 0.010 0.200 ZDT3
0.810 ZDT4 0.580 0.510 ZDT4

NSGA-II 0.050 ZDT6 0.060 0.020 0.666 DTLZ6 0.578 0.585
1.000 DTLZ1 0.990 1.000 DTLZ1
0.990 DTLZ2 0.990 1.000 DTLZ2
1.000 DTLZ7 0.990 0.950 DTLZ7

0.208 1.000 ZDT1 0.750 ZDT1
0.700 0.890 ZDT2 0.800 ZDT2
0.308 1.000 ZDT3 1.000 ZDT3
0.476 1.000 ZDT4 1.000 ZDT4

PESA 0.077 0.885 ZDT6 0.808 0.503 0.893 ZDT6 0.872
0.680 1.000 DTLZ1 0.970 DTLZ1
0.750 0.610 DTLZ2 0.940 DTLZ2
0.830 0.760 DTLZ7 0.710 DTLZ7

0.090 1.000 0.360 ZDT1 ZDT1
1.000 1.000 1.000 ZDT2 ZDT2
0.100 0.560 0.000 ZDT3 ZDT3
0.890 0.600 0.520 ZDT4 ZDT4

SPEA2 0.010 0.960 0.300 ZDT6 0.546 0.815 0.595 ZDT6
0.770 0.900 0.990 DTLZ1 DTLZ1
0.540 0.520 0.610 DTLZ2 DTLZ2
0.970 0.980 0.980 DTLZ7 DTLZ7

Table 4 shows the results obtained by all the MOEAs using the set coverage met-
ric. It can be seen that msPESA obtains the best average result of the four methods.
On average, msPESA covers 93.5%, 94.6%, and 94.5% of non-dominated solutions
obtained by NSGA-II, PESA, and SPEA2, respectively. On the contrary, only 66.6%,
50.3% and 54.6% of the non-dominated solutions obtained by msPESA are covered
by NSGA-II, PESA, and SPEA2, respectively. As this table shows, in the two-objec-
tive test functions msPESA covers all the non-dominated solutions obtained by the
other methods. In the three-objective test functions, only NSGA-II is able to obtain
results slightly better than msPESA.

Figure 4 shows the non-dominated solutions obtained by all the MOEAs in ZDT1,
ZDT2, ZDT3 and ZDT6. These graphs are very useful to understand the statistical
data provided in previous tables. It is shown that msPESA is able to reach the Pareto-
optimal in all cases, while the other methods are further away. Fig. 5 shows the same
comparison but in the three-objective test functions, using frontal and lateral views,
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respectively. Lateral views provide better information on the proximity to the Pareto-
optimal front, while frontal views are suitable to have an idea about the distribution
of the solutions. For instance, in the lateral view of DTLZ2 it is clear that SPEA2 is
far from the Pareto-optimal front, while the frontal view shows that msPESA obtains
a good distribution.

6 Conclusions

In this paper, we have proposed a new hybrid multi-objective evolutionary algorithm
based on combining some aspects of NSGA-II, and PESA. Furthermore, this new
approach also includes a local search procedure in an attempt to improve the qual-
ity of the solutions. The performance of this new multi-objective meta-heuristic has
been compared with three well-known MOEAs on a suite of five two-objective and
three three-objective test problems. Although establishing an order of merit between
different algorithms is a difficult task, the use of accurate metrics can evaluate their
performance. Metrics used in our experimental analysis, set coverage metric, and aver-
age size of the space covered, evaluate the quality of the non-dominated solutions in
terms of closeness to the global Pareto-optimal fronts. First conclusion obtained from
the results is that the use of the K-1 dimensional hypergrid scheme in combination
with local search outperforms the quality of the solutions. On the other hand, results
demonstrate that msPESA is able to reach the Pareto-optimal fronts in the two-objec-
tive test functions, and be close in the three-objective one. In comparison with the
other methods, msPESA obtains the best results in the two-objective test functions,
while in the three-objective problems is very close to SPEA2 and NSGA-II.
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